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Abstract. Recently, cosmic shear, the weak lensing effect by the inhomogeneous matter distribution in the Universe,
has not only been detected by several groups, but the observational results have been used to derive constraints
on cosmological parameters. For this purpose, several cosmic shear statistics have been employed. As shown
recently, all two-point statistical measures can be expressed in terms of the two-point correlation functions of the
shear, which thus represents the basic quantity; also, from a practical point-of-view, the two-point correlation
functions are easiest to obtain from observational data which typically have complicated geometry. We derive
in this paper expressions for the covariance matrix of the cosmic shear two-point correlation functions which
are readily applied to any survey geometry. Furthermore, we consider the more special case of a simple survey
geometry which allows us to obtain approximations for the covariance matrix in terms of integrals which are
readily evaluated numerically. These results are then used to study the covariance of the aperture mass dispersion
which has been employed earlier in quantitative cosmic shear analyses. We show that the aperture mass dispersion,
measured at two different angular scales, quickly decorrelates with the ratio of the scales. Inverting the relation
between the shear two-point correlation functions and the power spectrum of the underlying projected matter
distribution, we construct estimators for the power spectrum and for the band powers, and show that they yields
accurate approximations; in particular, the correlation between band powers at different wave numbers is quite
weak. The covariance matrix of the shear correlation function is then used to investigate the expected accuracy of
cosmological parameter estimates from cosmic shear surveys. Depending on the use of prior information, e.g. from
CMB measurements, cosmic shear can yield very accurate determinations of several cosmological parameters, in
particular the normalization σ8 of the power spectrum of the matter distribution, the matter density parameter
Ωm, and the shape parameter Γ.
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1. Introduction

Cosmic shear, the distortion of the images of distant galaxies by the tidal gravitational field of intervening matter
inhomogeneities, offers a direct way of probing the statistical properties of the large-scale (dark) matter distribution
in the Universe, without making any assumption on the relation between dark and luminous matter (e.g., Blandford
et al. 1991, Miralda-Escude 1991, Kaiser 1992, 1998, Jain & Seljak 1997, Bernardeau et al. 1997, Schneider et al. 1998,
hereafter SvWJK, van Waerbeke et al. 1999; Bartelmann & Schneider 1999; Jain et al. 2000, White & Hu 2000; see
Mellier 1999 and Bartelmann & Schneider 2001 for recent reviews). The first detections of cosmic shear on wide-field
imaging data (Bacon et al. 2000, 2002; Kaiser et al. 2000; van Waerbeke et al. 2000, 2001, 2002; Wittman et al.
2000, Maoli et al. 2001; Rhodes et al. 2001; Hämmerle et al. 2002; Hoekstra et al. 2002; Refregier et al. 2002) has
demonstrated the feasibility of this new window of observational cosmology, and yielded already the first constraints
on cosmological parameters, most noticibly the normalization σ8 of the dark matter power spectrum, but also on the
matter density parameter Ωm (van Waerbeke et al. 2002; Hoekstra et al. 2002).

Send offprint requests to: P. Schneider
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Most analytical work on cosmic shear has been done on two-point statistical measures of the distortion field, such
as the shear correlation functions, the shear variance in an apertures, or the aperture mass (see Sect. 2 for a definition
of these quantitities). Although higher-order statistical measures, such as the skewness of the shear (Bernardeau et al.
1997), are likely to yield additional, if not even superior constraints on cosmological parameters, their theoretical pre-
dictions are more uncertain at present. Recently, an estimator for the skewness of the shear was developed (Bernardeau
et al. 2002a), and applied to wide-field survey data (Bernardeau et al 2002b), yielding a significant detection.

In this paper we consider second-order statistical measures only. All of them can be derived in terms of the
correlation functions, as shown in, e.g., Crittenden et al. (2002, hereafter C02) and Schneider et al. (2002, hereafter
SvWM), and since the measurement of the correlation functions is easier in practice than the other two-point statistics
(e.g., gaps in the data are easily dealt with), we consider the correlation functions as the fundamental observables
from a cosmic shear survey. In order to use them for determining cosmological parameters, it is important to know a
practical and unbiased estimator for them, and to determine the covariance of this estimator. Two effects enter this
covariance: a random part, which is due to the intrinsic ellipticity of the galaxies from which the shear is measured,
together with measurement noise, and sampling (or cosmic) variance. The first of these effects is expected to dominate
on small angular scales, whereas the second determines the covariance for large separations. The covariance will depend
not only on the total survey area, but also on the survey geometry. As has been pointed out by Kaiser (1998), in order
to decrease the sampling variance on large scales, it may be favourable to choose a survey geometry that samples those
scales sparsely. In order to design an optimized survey geometry, the covariance as a function of survey geometry needs
to be calculated.

Here, we calculate the covariance matrices for the shear correlation functions binned in angular separation. In
Sect. 2, we introduce our notation and briefly summarize the two-point cosmic shear measures and their interrelations.
Unbiased estimators of the two basic correlation functions are derived in Sect. 3, togther with the corresponding
unbiased estimators of the aperture mass and the shear dispersion. The covariance matrices of these correlation
function estimators are then derived in Sect. 4, expressed in terms of a set of galaxy positions. From these expressions,
the covariances can be determined for an arbitrary survey geometry. In a forthcoming paper (Kilbinger et al., in
preparation), we shall use the results of Sect. 4 to design an optimized geometry for a planned cosmic shear survey.

For the case of a filled survey geometry, the ensemble average of these covariances can be further analyzed; using
a few approximations, we express in Sect. 5 the covariances for this case in terms of integrals. The corresponding
expressions have been evaluated, for a particular cosmological model, and are illustrated in a set of figures. In Sect. 6
we derive the covariance for the aperture mass dispersion, which can be expressed simply in terms of the covariances
of the correlation functions. The variance of the aperture mass dispersion, as well as the covariance, is then explicitly
calculated for a survey with filled geometry, showing that indeed the aperture mass at two angular scales decorrelates
quickly as the scale ratio decreases away from unity.

We then turn in Sect. 7 to a simple estimator of the power spectrum of the projected cosmic density field, which
can be expresed in terms of the correlation functions. Since the correlation functions will be known only over a finite
range in angular separation, the simple estimator we derive is biased. We show that, provided the angular range on
which the correlation functions can be measured is as large as can be expected with the next generation of cosmic
shear surveys, this bias is indeed very small over a large range of wave numbers. We derive the covariance of the
power spectrum estimator and calculate it explicitly for the filled survey geometry case; the resulting error bars on the
estimated power spectrum are quite a bit smaller than one might have expected, given the simplicity of the approach.
In Sect. 8 we consider the accuracy with which the parameters of the cosmological model can be constrained, given
a survey area. In fact, by fitting the correlation function directly to model predictions, even the currently available
cosmic shear surveys can yield fairly accurate constraints on cosmological parameter. Finally, we summarize our results
in Sect. 9.

In this paper we shall assume that the observable shear is due to the tidal gravitational field of the cosmological
matter distribution only; in this case, the two shear components are not mutually independent. This is due to the fact
that the gravitational field is a gradient field. In the language of some recent papers (e.g., C02; Pen et al. 2002; SvWM),
we thus assume that the shear field is a pure E-mode field. B-modes, (or the ‘curl component’), can in principle be
generated if the intrinsic orientation of the galaxies from which the shear is measured are correlated, e.g. due to tidal
interactions of dark matter halos in which these galaxies are formed (Croft & Metzler 2000; Pen et al. 2000; Heavens
et al. 2001; Catelan et al. 2001; Mackey et al. 2002; Brown et al. 2002). Also, the clustering of source galaxies in
redshift space generates a B-mode contribution which, however, turns out to be fairly small (SvWM). This restriction
to E-modes only affects the interrelations between various two-point statistics. Inclusion of B-modes would not change
the results of Sects. 3 through 5, and much of Sects. 6 and 7 will also be left unaffected in the presence of a B-mode
contribution; we shall indicate this in due course.
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2. Two-point measures of cosmic shear

We follow here the notation of Bartelmann & Schneider (2001). The power spectrum of the projected density field is
denoted by Pκ(ℓ), where ℓ is the Fourier variable on the sky.

The shear correlation functions are defined by considering pairs of positions ϑ and θ+ϑ, and defining the tangential
and cross-component of the shear γ = γ1 + iγ2 at position ϑ for this pair as

γt = −Re
(

γ e−2iϕ
)

; γ× = −Im
(

γ e−2iϕ
)

, (1)

where ϕ is the polar angle of the separation vector θ. Then we define the two shear correlation functions (e.g., Kaiser
1992)

ξ±(θ) := 〈γtγt〉 ± 〈γ×γ×〉 =
1

2π

∫ ∞

0

dℓ ℓ Pκ(ℓ) J0,4(ℓθ) , (2)

where the Bessel function J0 (J4) corresponds to the ‘+’ (‘−’) correlation function. The shear dispersion in a circle of
radius θ is defined by considering circular apertures and ensemble-averaging over the square of the complex shear; its
relation to the power spectrum reads (e.g., Kaiser 1992)

〈

|γ|2
〉

(θ) =
1

2π

∫ ∞

0

dℓ ℓ Pκ(ℓ)
4 [J1(ℓθ)]

2

(ℓθ)2
. (3)

Furthermore, the aperture mass Map in an aperture of radius θ is defined as a weighted average over the tangential
shear component (see, e.g. Schneider 1996; SvwJK), and its dispersion is related to the power spectrum by

〈

M2
ap

〉

(θ) =
1

2π

∫ ∞

0

dℓ ℓ Pκ(ℓ)
576 [J4(ℓθ)]

2

(ℓθ)4
. (4)

where the same weight function in the definition of Map as in SvWM was assumed.

All these 2-point statistics are thus linearly filtered versions of the power spectrum Pκ, where the filter functions
are quite different between the various statistics. For the correlation function ξ+, the filter function J0(η) is very broad,
about constant for η ≪ 1, and oscillating for large η, with an amplitude decreasing as η−1/2. The filter function J4(η)
for ξ− has the same slow decrease, but behaves as η4 for small η, and is therefore more localized than the one for ξ+.
The filter function for the shear dispersion, [2J1(η)/η]

2, is a low-pass filter, i.e. constant for η ≪ 1, and then decreasing
in amplitude as η−3 for large η. Finally, the filter function for the aperture mass dispersion is [24J4(η)/η

2]2 and thus
behaves like η4 for small η, and decreases oscillatory as η−5 for η → ∞. Hence,

〈

M2
ap

〉

yields the most local estimate
of the underlying power spectrum of the projected mass. On the other hand, because it is so localized, it contains less

power in its filter, so that the value of
〈

M2
ap

〉

is smaller than that of
〈

|γ|2
〉

on the same filter scale θ.

The various two-point statistics of the shear are related to each other; in particular, they can all be expressed
in terms of the correlation functions, as was shown in C02, Pen et al. (2002) and SvWM. We briefly summarize the
results here.

Making use of the orthogonality of Bessel functions, the power spectrum can be expressed in terms of the correlation
functions ξ+(θ) and ξ−(θ), by multiplying eqs.(2) by θ J0(ℓθ) and θ J4(ℓθ), respectively, and then integrating over θ,
to obtain

Pκ(ℓ) = 2π

∫ ∞

0

dθ θ ξ+(θ) J0(ℓθ) = 2π

∫ ∞

0

dθ θ ξ−(θ) J4(ℓθ) . (5)

These equations express the power spectrum directly in terms of the observable correlation function; however, in order
to evaluate Pκ(ℓ) from them, one would need to know the correlation functions for all angles. In Sect. 7 below, we
shall investigate how well the power spectrum can be determined from knowing the correlation function over a limited
range of separations.

The two equations (2) and (5) allow us to express ξ+ in terms of ξ−, and reversely (see SvWM for a derivation),

ξ−(θ) = ξ+(θ) +

∫ θ

0

dϑ ϑ ξ+(ϑ)

(

4

θ2
− 12ϑ2

θ4

)

; ξ+(θ) = ξ−(θ) +

∫ ∞

θ

dϑ ϑ ξ−(ϑ)

(

4

ϑ2
− 12θ2

ϑ4

)

. (6)

Hence one can obtain ξ−(θ) from the correlation function ξ+(ϑ) in the interval 0 ≤ ϑ ≤ θ, and so this relation can be
directly applied to observational data, with a minor extrapolation to small separations. The reverse relation, expressing
ξ+ in terms of ξ−, is less useful in practice, owing to the infinite range of integration.
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Next we express the shear dispersion (3) in terms of the correlation function, by inserting (5) into (3); this yields
(van Waerbeke 2000; SvWM)

〈

|γ|2
〉

(θ) =

∫ 2θ

0

dϕ ϕ

θ2
ξ+(ϕ)S+

(ϕ

θ

)

=

∫ ∞

0

dϕ ϕ

θ2
ξ−(ϕ)S−

(ϕ

θ

)

, (7)

where

S+(x) = 4

∫ ∞

0

dt

t
J0(xt) [J1(t)]

2
=

1

π

[

4 arccos
(x

2

)

− x
√

4 − x2
]

H(2 − x) ,

S−(x) = 4

∫ ∞

0

dt

t
J4(xt) [J1(t)]

2
=
x
√

4 − x2(6 − x2) − 8(3 − x2) arcsin(x/2)

πx4
H(2 − x) +

4(x2 − 3)

x4
H(x− 2) , (8)

and H(x) is the Heaviside step function. Hence, the function S+(x) vanishes for x > 2, so that the shear dispersion
can be expressed as a finite-range integral over the correlation function ξ+; this is not the case for S−.

Similarly, one can express the aperture mass dispersion in terms of the correlation functions, by inserting (5) into
(4):

〈

M2
ap

〉

(θ) =

∫ 2θ

0

dϕ ϕ

θ2
ξ+(ϕ)T+

(ϕ

θ

)

=

∫ 2θ

0

dϕ ϕ

θ2
ξ−(ϕ)T−

(ϕ

θ

)

, (9)

where

T+(x) = 576

∫ ∞

0

dt

t3
J0(xt) [J4(t)]

2

=

{

6(2 − 15x2)

5

[

1 − 2

π
arcsin

(x

2

)

]

+
x
√

4 − x2

100π

(

120 + 2320x2 − 754x4 + 132x6 − 9x8
)

}

H(2 − x) , (10)

T−(x) = 576

∫ ∞

0

dt

t3
J4(xt) [J4(t)]

2
=

192

35π
x3

(

1 − x2

4

)7/2

H(2 − x) .

Both of these functions vanish for x > 2, so that
〈

M2
ap

〉

can be expressed by a finite integral over either ξ±. The
functions S± and T± are plotted in SvWM.

The fact that we can express the shear dispersion and the aperture mass dispersion directly in terms of the
correlation function over a finite interval is expected, given that the estimators of both statistics include products
of ellipticities of pairs of objects separated by no more than the diameter of the aperture. However, what could not
have been guessed a priori is that

〈

M2
ap

〉

(θ) can be expressed by a finite integral over ξ+ and ξ− separately. The
determination of these statistics in terms of the correlation function is in practice easier than laying down apertures,
owing to the holes and gaps in a data set; in addition, a comparison of the directly determined shear and aperture
mass dispersion with those obtained from the correlation functions yields a useful check on the integrity of the data.

3. Estimators

We shall now consider practical estimators of the correlation functions and the other two-point statistics. The observ-
able ellipticity ǫi of a galaxy image at angular position θi is related to the intrinsic ellipticity ǫsi and the shear γ(θi)
by

ǫi = ǫsi + γ(θi) , (11)

where it has been assumed that |γ| ≪ 1 for this weak lensing relation to be valid. In addition to an ellipticity, each
galaxy may carry a weight factor wi which reflects the precision with which its ellipticity can be determined – noisy
objects can then be downweighted by assigning small values of wi to them (Hoekstra et al. 2000; Erben et al. 2001;
Bacon et al. 2001; Pen et al. 2002). We shall assume that the correlation function is to be estimated in bins of angular
width ∆ϑ, and define the function ∆ϑ(φ) = 1 for ϑ−∆ϑ/2 < φ ≤ ϑ+∆ϑ/2, and zero otherwise; hence, ∆ϑ(φ) defines
the bin at angle ϑ. An estimator for the correlation function ξ+(ϑ) is then

ξ̂+(ϑ) =

∑

ij wi wj (ǫitǫjt + ǫi×ǫj×)∆ϑ(|θi − θj |)
Np(ϑ)

, Np(ϑ) =
∑

ij

wi wj ∆ϑ(|θi − θj |) ; (12)

Np(ϑ) is the effective ‘number of pairs’ in the bin considered (in fact, if all weights are unity, Np is twice the number
of pairs), and the tangential and cross components of the ellipticity are defined in analogy to the corresponding shear
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components in (1). The expectation value of this estimator is obtained by averaging over the source ellipticities,
assumed to be randomly oriented, and an ensemble average of the shear field. Since

〈ǫitǫjt + ǫi×ǫj×〉 = σ2
ǫ δij + ξ+(|θi − θj |) , (13)

where σ2
ǫ is the dispersion of the intrinsic galaxy ellipticity, we see immediately that ξ̂+ is an unbiased estimator of

ξ+,
〈

ξ̂+(ϑ)
〉

= ξ+(ϑ) , (14)

since the product δij∆ϑ(|θi − θj |) vanishes for all pairs i, j. Analogously, an unbiased estimator for ξ− is

ξ̂− =

∑

ij wi wj (ǫitǫjt − ǫi×ǫj×) ∆ϑ(|θi − θj |)
Np(ϑ)

,
〈

ξ̂−(ϑ)
〉

= ξ−(ϑ) . (15)

Next we obtain an unbiased estimator for the aperture mass dispersion. For that we assume that the centers of the
bins on which the correlation function is calculated are described by ϑi = (i− 1/2)∆ϑ, and that the aperture radius
θ is an integer multiple of the bin width, θ = m∆ϑ. Then, the integrals in (9) are replaced by sums over the bins,
yielding an estimator for

〈

M2
ap(θ)

〉

,

M(θ) =
∆ϑ

θ2

2m
∑

i=1

ϑi

[

K+ξ̂+(ϑi)T+

(

ϑi
θ

)

+ (1 −K+)ξ̂−(ϑi)T−

(

ϑi
θ

)]

, (16)

where K+ describes the relative contributions of the two expressions (9). For example, in the presence of B-modes,
one needs to use K+ = 1/2 (SvWM). Similarily, an unbiased estimator for the shear dispersion is

S(θ) =
∆ϑ

θ2

[

K+

2m
∑

i=1

ϑi ξ̂+(ϑi)S+

(

ϑi
θ

)

+ (1 −K+)

∞
∑

i=1

ϑi ξ̂−(ϑi)S−

(

ϑi
θ

)

]

; (17)

again, in the presence of B-modes,K+ = 1/2 shall be chosen (however, the infinite support of S− requires the knowledge
of the correlation function ξ− for all separations). Both of the above are unbiased estimators, 〈M(θ)〉 =

〈

M2
ap(θ)

〉

,

〈S(θ)〉 =
〈

|γ|2
〉

(θ).

4. Covariance of the estimators

Next we calculate the covariance of the various estimators, starting with the correlation functions. Hence, we define

Cov(ξ̂±, ϑ1; ξ̂±, ϑ2) :=
〈(

ξ̂±(ϑ1) − ξ±(ϑ1)
)(

ξ̂±(ϑ2) − ξ±(ϑ2)
)〉

. (18)

Consider first the ‘++’-covariance function, for which one needs to evaluate
〈

ξ̂+(ϑ1)ξ̂+(ϑ2)
〉

=
1

Np(ϑ1)Np(ϑ2)

∑

ijkl

wiwjwkwl∆ϑ1
(ij)∆ϑ2

(kl) 〈(ǫi1ǫj1 + ǫi2ǫj2) (ǫk1ǫl1 + ǫk2ǫl2)〉 , (19)

where we defined ∆ϑ(ij) ≡ ∆ϑ(|θi − θj |) and used the fact that ǫitǫjt + ǫi×ǫj× = ǫi1ǫj1 + ǫi2ǫj2. Next, the four-point
correlation function of the ellipticities needs to be evaluated. For that, we use (11) and expand the resulting expression.
Only terms of even power in ǫs and γ survive the averaging over the source ellipticities and the ensemble average.
Then,

〈ǫiαǫjβǫkµǫlν〉 = 〈γiαγjβγkµγlν〉 +
σ2
ǫ

2

(

δjlδβν 〈γiαγkµ〉 + δjkδβµ 〈γiαγlν〉 + δilδαν 〈γjβγkµ〉 + δikδαµ 〈γjβγlν〉
)

+
〈

ǫsiαǫ
s
jβǫ

s
kµǫ

s
lν

〉

, (20)

valid for i 6= j and k 6= l, as needed in (19); here, Greek letters are ∈ {1, 2}. To evaluate the four-point function of the
shear, we shall assume that the shear field is Gaussian, so that the four-point function can be written as a sum over
products of two-point functions. We shall later comment on the effect this assuption has on the determination of the
covariances. The four-point function of the intrinsic ellipticity also factorizes, since at most two of the indices i, j, k, l
are equal. Therefore,

〈ǫiαǫjβǫkµǫlν〉 =
σ2
ǫ

2

(

δjlδβν 〈γiαγkµ〉 + δjkδβµ 〈γiαγlν〉 + δilδαν 〈γjβγkµ〉+ δikδαµ 〈γjβγlν〉
)

+ 〈γiαγjβ〉 〈γkµγlν〉 + 〈γiαγkµ〉 〈γjβγlν〉 + 〈γiαγlν〉 〈γjβγkµ〉+

(

σ2
ǫ

2

)2

(δikδjlδαµδβν + δilδjkδανδβµ) . (21)



6 Peter Schneider et al.: Analysis of two-point statistics of cosmic shear: I. Estimators and covariances

The correlation functions of the shear components can be expressed as (Kaiser 1992)

〈γi1γj1〉 =
1

2
[ξ+(ij) + ξ−(ij) cos(4ϕij)] ; 〈γi2γj2〉 =

1

2
[ξ+(ij) − ξ−(ij) cos(4ϕij)] ; 〈γi1γj2〉 =

1

2
ξ−(ij) sin(4ϕij) , (22)

where we have written ξ±(ij) ≡ ξ±(|θi − θj |), and ϕij is the polar angle of the difference vector θi − θj . From these
relations, one obtains for the covariance matrix

Cov(ξ̂+, ϑ1; ξ̂+, ϑ2) =
1

Np(ϑ1)Np(ϑ2)

[

σ4
ǫ δ̄(ϑ1 − ϑ2)

∑

ij

w2
iw

2
j∆ϑ1

(ij) + 2σ2
ǫ

∑

ijk

w2
iwjwk∆ϑ1

(ij)∆ϑ2
(ik)ξ+(jk)

+
∑

ijkl

wiwjwkwl∆ϑ1
(ij)∆ϑ2

(kl)
(

ξ+(il)ξ+(jk) + cos [4 (ϕil − ϕjk)] ξ−(il)ξ−(jk)
)

]

, (23)

where the function δ̄(ϑ1−ϑ2) is zero if the two separation bins are different, and is 1 if they are the same. The first term
in (23) therefore contributes only to the diagonal terms in the covariance matrix. In the absence of shear correlations,
the covariance matrix would be diagonal; correlation populates the off-diagonal elements of the covariance tensor.

To calculate the covariance matrix for the ξ− correlation function, we first write

ǫitǫjt − ǫi×ǫj× = (ǫi1ǫj1 − ǫi2ǫj2) cos 4ϕij + (ǫi1ǫj2 + ǫi2ǫj1) sin 4ϕij ;

inserting this into the definition of the covariance matrix and performing the same step as for the ‘++’ covariance,
one finds

Cov(ξ̂−, ϑ1; ξ̂−, ϑ2) =
1

Np(ϑ1)Np(ϑ2)

[

σ4
ǫ δ̄(ϑ1 − ϑ2)

∑

ij

w2
iw

2
j∆ϑ1

(ij)

+ 2σ2
ǫ

∑

ijk

w2
iwjwk∆ϑ1

(ij)∆ϑ2
(ik) cos [4(ϕij − ϕik)] ξ+(jk) (24)

+
∑

ijkl

wiwjwkwl ∆ϑ1
(ij)∆ϑ2

(kl)
(

cos [4(ϕij − ϕil − ϕjk + ϕkl)] ξ−(il)ξ−(jk) + cos [4 (ϕij − ϕkl)] ξ+(il)ξ+(jk)
)

]

.

Finally, the mixed covariance matrix can be calculated in the same manner, yielding

Cov(ξ̂+, ϑ1; ξ̂−, ϑ2) =
1

Np(ϑ1)Np(ϑ2)

[

2σ2
ǫ

∑

ijk

w2
iwjwk∆ϑ1

(ij)∆ϑ2
(ik) cos [4(ϕik − ϕjk)] ξ−(jk)

+ 2
∑

ijkl

wiwjwkwl∆ϑ1
(ij)∆ϑ2

(kl) cos [4(ϕil − ϕkl)] ξ−(il)ξ+(jk)

]

. (25)

5. Averaging over an ensemble of galaxy positions

Given a model for the shear correlation, the covariances (23–25) can be calculated using the actual galaxy positions
and their weight factors; in principle, this procedure is straightforward to apply to a given data set. Alternatively,
given the geometry of a data field, then by randomly distributing galaxy positions the expected covariance of the shear
correlation can be determined; this procedure can be used to design and optimize cosmic shear surveys (Kilbinger
et al., in preparation). These calculations are, however, time-consuming, given the sum over three and four galaxy
positions. It is therefore of interest to consider a relatively simple situation where fairly explicit expressions for the
covariance matrices can be obtained. In particular, we shall calculate the ensemble average of the covariance matrices.
We consider here a survey geometry which consists of a single data field of solid angle A and galaxy number density
n, so that N = nA is the total number of galaxies in the survey. The survey geometry is assumed to be ‘simple’,
i.e. consisting of a simply connected region, say, a quadratic field. We shall assume that all weight factors are unity,
wi = 1. Furthermore, we shall consider separations ϑi which are small compared to the ‘diameter’ of the survey field,
ϑ2
i ≪ A; in this case, we can neglect ‘boundary effects’ which otherwise would complicate the analysis tremendously.

With these assumptions, the number of pairs in the bin characterized by ϑ is then

Np(ϑ) = An 2πϑ∆ϑn . (26)

The ensemble average over galaxy positions is carried out by the averaging operator

E =

N
∏

i=1

(

1

A

∫

A

d2θi

)

,
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i.e. the galaxies are assumed to be randomly placed on the field. The average of the first term in (23) and (24) is
simple and reads

E





σ4
ǫ δ̄(ϑ1 − ϑ2)

Np(ϑ1)Np(ϑ2)

∑

ij

∆ϑ1
(ij)



 =
σ4
ǫ

Np(ϑ1)
δ̄(ϑ1 − ϑ2) =: D δ̄(ϑ1 − ϑ2) . (27)

As expected, this term depends explicitly on the bin size chosen, since Np ∝ ∆ϑ. In practical units,

D = 3.979× 10−9
( σǫ

0.3

)4
(

A

1 deg2

)−1 (

n

30 arcmin−2

)−2 (

ϑ

1 arcmin

)−2 (

∆ϑ/ϑ

0.1

)−1

.

As we shall see, the other terms are independent of the choice of the bins. To evaluate the other terms, one notes that
the expectation value of all terms involving a sum over three galaxy positions can be written in terms of

Eabc ≡ E





∑

ijk

∆ϑ1
(ij)∆ϑ2

(ik)Fa(ϕij)Fb(ϕik)Fc(θk − θj)



 , (28)

or linear combinations thereof. Applying the averaging operator, we note that there are N(N − 1)(N − 2) ≈ N3

permutations of galaxies, so that

Eabc =
N3

A3

∫

d2θ1

∫

d2θ2

∫

d2θ3 ∆ϑ1
(12)∆ϑ2

(13)Fa(ϕ12)Fb(ϕ13)Fc(θ3 − θ2)

=
N3

A2

∫ ϑ1+∆ϑ/2

ϑ1−∆ϑ/2

dφ1 φ1

∫ 2π

0

dϕ1 Fa(ϕ1)

∫ ϑ2+∆ϑ/2

ϑ2−∆ϑ/2

dφ2 φ2

∫ 2π

0

dϕ2 Fb(ϕ2) Fc(φ2 − φ1) ,

where in the second step we have written θ2 = θ1 + φ1, θ3 = θ1 + φ2, so that θ3 − θ2 = φ2 − φ1, ϕ1 and ϕ2 denote
the polar angles of φ1, φ2, respectively. After this substitution, the integral becomes independent of θ1, which can be
integrated to yield a factor A. Assuming that the bin width ∆ϑ is small, one can evaluate the φ1 and φ2 integrals, to
obtain

Eabc
Np(ϑ1)Np(ϑ2)

=
1

(2π)2An

∫ 2π

0

dϕ1 Fa(ϕ1)

∫ 2π

0

dϕ2 Fb(ϕ2)Fc

(

ϑ2 cosϕ2 − ϑ1 cosϕ1

ϑ2 sinϕ2 − ϑ1 sinϕ1

)

. (29)

Similarily, the expectation value of all terms involving a sum over four galaxy positions can be written in terms of

Eabcd ≡ E





∑

ijkl

∆ϑ1
(ij)∆ϑ2

(kl)Fa(θk − θj)Fb(θl − θi)Fc(ϕij)Fd(ϕkl)





=
N4

A4

∫

d2θ1

∫

d2θ2 ∆ϑ1
(12)Fc(ϕ12)

∫

d2θ3

∫

d2θ4 ∆ϑ2
(34)Fd(ϕ34)Fa(θ3 − θ2)Fb(θ4 − θ1)

=
N4

A3

∫

d2φ

∫ ϑ1+∆ϑ/2

ϑ1−∆ϑ/2

dφ1 φ1

∫ 2π

0

dϕ1 Fc(ϕ1)

∫ ϑ2+∆ϑ/2

ϑ2−∆ϑ/2

dφ2 φ2

∫ 2π

0

dϕ2 Fd(ϕ2)Fa(φ− φ1)Fb(φ+ φ2) ,

where in the second step we defined θ2 = θ1 + φ1, θ4 = θ3 + φ2; then, the arguments of the functions Fa and Fb
become θ3 − θ2 = θ3 − θ1 − φ1 and θ4 − θ1 = θ3 − θ1 + φ2, i.e. they depend only on the difference φ = θ3 − θ1,
so that the integral over θ3 can be carried out, yielding a factor A. Performing the φ1 and φ2 integration, assuming
small bin width, one obtains

Eabcd
Np(ϑ1)Np(ϑ2)

=
1

(2π)2A

∫ ∞

0

dφφ

∫ 2π

0

dϕ1 Fc(ϕ1)

∫ 2π

0

dϕ2 Fd(ϕ2)

∫ 2π

0

dϕFa(ψa)Fb(ψb) , (30)

where the vectors

ψa =

(

φ cosϕ− ϑ1 cosϕ1

φ sinϕ− ϑ1 sinϕ1

)

; ψb =

(

φ cosϕ+ ϑ2 cosϕ2

φ sinϕ+ ϑ2 sinϕ2

)

(31)

have been defined for later convenience.
Next we shall evaluate the second term of (23) which is of the form (28), with Fa = 1 = Fb, Fc(ψ) = ξ+(|ψ|);

inserting these expressions into (29), the expectation value of the second term in (23) becomes

q++ =
2σ2

ǫ

πAn

∫ π

0

dϕ ξ+

(

√

ϑ2
1 + ϑ2

2 − 2ϑ1ϑ2 cosϕ

)

. (32)
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The expectation value of the third term in (23) can be calculated by splitting it up into three parts: in the first,
Fa(ψ) = ξ+(|ψ|) = Fb(ψ), and the other two are obtained by expanding the cosine-term, so that for one of them,
Fa(ψ) = cos 4ϕψ ξ−(|ψ|) = Fb(ψ), and for the other, cos is replaced by sin; here, ϕψ is the polar angle of ψ. Note
that all three terms have Fc = 1 = Fd. The final result then reads

E
(

Cov(ξ̂+, ϑ1; ξ̂+, ϑ2)
)

= D δ̄(ϑ1 − ϑ2) + q++ + r+0 + r+1 , (33)

where D and q++ have been defined in (27) and (32), respectively,

r+0 =
2

πA

∫ ∞

0

dφφ

∫ π

0

dϕ1 ξ+(|ψa|)
∫ π

0

dϕ2 ξ+(|ψb|) ,

r+1 =
1

(2π)A

∫ ∞

0

dφφ

∫ 2π

0

dϕ1 ξ−(|ψa|)
∫ 2π

0

dϕ2 ξ−(|ψb|) [cos 4ϕa cos 4ϕb + sin 4ϕa sin 4ϕb] , (34)

and ϕa, ϕb are the polar angles of ψa, ψb, respectively, cos 4ϕa = 1 − 8ψ2
a1ψ

2
a2/|ψa|4, sin 4ϕa = 4ψa1ψa2(ψ

2
a1 −

ψ2
a2)/|ψa|4, and the analogous expressions for ϕb. Note that the ϕ-integration present in (30) has dropped out as the

integrand depends only on ϕ1 − ϕ, and ϕ2 − ϕ; hence, the ϕ-integration can be carried out and one can use ϕ = 0 in
(31).

Several issues are worth mentioning: (1) only the first term containing the ‘delta function’ depends on the bin
width ∆ϑ; thus, the bin width only affects the autovariance. (2) All terms are proportional to A−1; hence, the relative
contribution of the terms is independent of the survey area, at least for separations well below the ‘diameter’ of the
survey area for which the foregoing procedure of the ensemble averaging is valid. (3) The terms denoted by ‘r’ are
independent of the intrinsic ellipticity dispersion and of the number density of galaxies. Hence, these terms describe
the cosmic variance and thus provide a limit on the accuracy of the determination of the correlation function for a
given survey geometry, independent of the observing conditions which determine n.

The expectation values of the other covariance matrices are calculated in a similar manner. Consider the ‘−−’
covariance (24) next; the first term agrees with that of (23). For the second term, we can apply (29), after expanding
the cosine; then Fa(ϕ) and Fb(ϕ) are either cos 4ϕ or sin 4ϕ, and Fc(ψ) = ξ+(|ψ|). Similarily, (30) can be applied to
the third term of (24), after expanding the cosine; using (30) term by term, and combining the results afterwards, one
obtains

E
(

Cov(ξ̂−, ϑ1; ξ̂−, ϑ2)
)

= D δ̄(ϑ1 − ϑ2) + q−− + r−0 + r−1 , (35)

where

q−− =
2σ2

ǫ

πAn

∫ π

0

dϕ ξ+

(

√

ϑ2
1 + ϑ2

2 − 2ϑ1ϑ2 cosϕ

)

cos(4ϕ) ,

r−0 =
1

(2π)A

∫ ∞

0

dφφ

∫ 2π

0

dϕ1 ξ−(|ψa|)
∫ 2π

0

dϕ2 ξ−(|ψb|) cos[4(ϕ1 + ϕ2 − ϕa − ϕb)] , (36)

r−1 =
1

(2π)A

∫ ∞

0

dφφ

∫ 2π

0

dϕ1 ξ+(|ψa|)
∫ 2π

0

dϕ2 ξ+(|ψb|) cos[4(ϕ1 − ϕ2)] .

Finally, the expectation value of (25), the mixed covariance, is calculated in a similar manner, yielding

E
(

Cov(ξ̂+, ϑ1; ξ̂−, ϑ2)
)

= q+− + r+− , (37)

with

q+− =
2σ2

ǫ

πAn

∫ π

0

dϕ

[

4
∑

k=0

(

4
k

)

(−1)k ϑk1 ϑ
4−k
2 cos(kϕ)

]

(

ϑ2
1 + ϑ2

2 − 2ϑ1ϑ2 cosϕ
)−2

ξ−

(

√

ϑ2
1 + ϑ2

2 − 2ϑ1ϑ2 cosϕ

)

r+− =
1

πA

∫ ∞

0

dφφ

∫ 2π

0

dϕ1 ξ+(|ψa|)
∫ 2π

0

dϕ2 ξ−(|ψb|) cos[4(ϕ2 − ϕb)] . (38)

Hence, as already seen from (25), the cross-covariance matrix has no pure noise term from the intrinsic galaxy ellipticity
dispersion as the other two covariance matrices.

We have obtained numerical estimates for the ensemble-averaged covariance matrices derived above (see Fig. 1).
In the numerical estimates given in this paper (except Sect. 8.2), we have used a standard set of parameters. The
cosmological parameters are those of a by-now standard Λ-dominated universe, Ωm = 0.3, ΩΛ = 0.7. The power
spectrum of the density fluctuations is described by its primordial slope of n = 1, a shape parameter Γ = 0.21,
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Fig. 1. The correlation functions. In the left panel, we have plotted the covariance matrices Cov′

++(ϑ1, ϑ2) (thick solid
curves) and Cov′

−−(ϑ1, ϑ2), i.e. the covariance matrices with the shot-noise term removed. For Cov′

++(ϑ1, ϑ2), the
contours are linearly spaced, with the lowest value at 10−9 (outer-most contour) and highest value 9 × 10−9 for small
ϑ1, ϑ2. For Cov′

−−(ϑ1, ϑ2), contours are logarithmically spaced, with consecutive contours differing by a factor 1.5. The
solid contours display positive values of Cov′

−−(ϑ1, ϑ2), starting from 10−14, with the maximum value of ∼ 3 × 10−9

in the upper right corner, and dotted contours show negative values of Cov′

−−(ϑ1, ϑ2), starting at −10−15. In the right
panel, Cov+−(ϑ1, ϑ2) is shown, again with logarithmically spaced contours differing by a factor of 1.5. Solid contours
are for positive values of Cov+−(ϑ1, ϑ2), starting at 10−14, negative values are shown by dotted contours, starting at
−10−13.

and a normalization of σ8 = 1. We used the fit formula of Bardeen et al. (1986) for the linear power spectrum, and
the prescription of Hamilton et al. (1991) in the form given in Peacock & Dodds (1996) to describe the non-linear
evolution of the power spectrum. Furthermore, we fix the survey properties to be described by a fiducial area of
A = 1 deg2, a number density n = 30 arcmin−2 of source galaxies, and an intrinsic ellipticity dispersion of σǫ = 0.3.
The source galaxies were assumed to have a redshift distribution p(z) ∝ z2 exp[−(z/z0)

1.5], so that the mean redshift
is z̄ = 1.505 z0. For the examples shown in Sects. 5 through 7, we take z0 = 1. Note that all covariances simply scale
with A−1, so that the results displayed here are easily translated to other survey sizes. This scaling is also implicitly
implied when considering scales of order a degree or more – all the numerical estimates are for the ensemble averaged
covariances, and their validity as given here depends on the assumption θ2 ≪ A.

Figure 2 displays in the left panel the square root of the (auto)variance of ξ̂+(ϑ) and ξ̂−(ϑ), with Var(ξ̂±;ϑ) =

Cov(ξ̂±, ϑ; ξ̂±, ϑ). To calculate the value of D (27) which enters the diagonal part of the covariance matrix, we have
assumed a bin width of ∆ϑ = 0.1ϑ. The square root of the variance – or noise per bin – for ξ+ is smaller than ξ+ for
ϑ <∼ 10′, and larger for larger angles (for the assumed value of A = 1 deg2), whereas the noise for ξ− is smaller than
ξ− in an interval of 1′ <∼ ϑ <∼ 30′. The determination of ξ− on small angular scales is much more difficult than for ξ+,
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Fig. 2. Left panel: The square root of the variances

√

Var(ξ̂+;ϑ) and

√

Var(ξ̂−;ϑ) shown as dotted and long-dashed

curves, together with the correlation functions ξ+(ϑ) and ξ−(ϑ) as solid and short-dashed curves, respectively. The
model parameters are as described in the text; in particular, a fiducial value of the survey area of 1 deg2 has been
taken. For the diagonal part of the covariance matrix, we have assumed a relative bin size of ∆ϑ/ϑ = 0.1. For small
ϑ, the variance behaves as ϑ−1, as it is dominated by the noise from the intrinsic ellipticity of the source galaxies, i.e.
the term D (27), whereas for larger values of ϑ, the main contribution comes from cosmic variance. Right panel: The

correlation coefficient rcorr, as defined in (39), as a function of ϑ2, for various values of ϑ1. Solid curves show rcorr(ξ̂+),

dashed curves show rcorr(ξ̂−). The value of ϑ1 corresponding to each curve can be read off from the point where a
curve attains the value rcorr = 1.

owing to the smallness of ξ− for small ϑ. Note that the noise scales like A−1/2, so that from a survey of 16 sq.deg.,
like the DESCART survey (see van Waerbeke et al. 2001) one should be able to obtain reliable measurements of ξ+
for ϑ <∼ 1◦, and of ξ− for 10′′ <∼ ϑ <∼ 2◦ in bins of relative width of 0.1. Of course, the covariance of the shear will not
only depend on the survey area, but also on its geometry; one might therefore design survey geometries which yield
the desired noise behaviour as a function of angular scale (see, e.g., Kaiser 1998).

In order to show how strongly the correlation estimators at two angular scales are correlated, we define the
correlation coefficient

rcorr(ξ̂±;ϑ1, ϑ2) :=
Cov′(ξ̂±, ϑ1; ξ̂±, ϑ2)

√

Cov′(ξ̂±, ϑ1; ξ̂±, ϑ1) Cov′(ξ̂±, ϑ2; ξ̂±, ϑ2)
, (39)

which is unity for ϑ1 = ϑ2. Here, the prime indicates that the first term in the covariances [the one proportional to
δ̄(ϑ1−ϑ2)] has been subtracted off, in order to show the correlation induced by cosmic shear. The correlation coefficient
is plotted in the right panel of Fig. 2. The ξ− correlation function decorrelates quickly: once the ratio between the
angular scales is larger than ∼ 2, the correlation coefficient (39) has decreased to less than 10%. In contrast to this, the
correlation function ξ+ is correlated over much larger angular scales. This was expected, given that the filter function
which relates the correlation function to the power spectrum is much broader for ξ+ than for ξ−.
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6. Covariance of the aperture mass estimator

Due to the particular interest in the aperture mass dispersion, we shall consider here the covariance matrix of the
estimator (16),

Cov(M; θ1, θ2) = 〈M(θ1)M(θ2)〉 −
〈

M2
ap(θ1)

〉 〈

M2
ap(θ2)

〉

. (40)

Inserting (16) into this expression, the covariance matrix of M becomes

Cov(M; θ1, θ2)=
(∆ϑ)2

θ21θ
2
2

2m1
∑

i=1

2m2
∑

j=1

ϑiϑj

{

K2
+T+

(

ϑi
θ1

)

T+

(

ϑj
θ2

)

C++(ϑi, ϑj) + (1 −K+)2T−

(

ϑi
θ1

)

T−

(

ϑj
θ2

)

C−−(ϑi, ϑj)

+K+(1 −K+)

[

T+

(

ϑi
θ1

)

T−

(

ϑj
θ2

)

C+−(ϑi, ϑj) + T−

(

ϑi
θ1

)

T+

(

ϑj
θ2

)

C+−(ϑj , ϑi)

]

}

, (41)

where we used the abbreviated notation C++(ϑ1, ϑ2) ≡ Cov(ξ̂+, ϑ1; ξ̂+, ϑ2) etc.. The values of the aperture radius are
taken to be θk = mk ∆ϑ for k = 1, 2, and ϑi = (i − 1/2)∆ϑ, as before. Hence, the covariance of the aperture mass
dispersion can be obtained directly in terms of the covariances of the shear correlation functions. We can also obtain
the ensemble-averaged covariance matrix; for this purpose, we separate the ‘delta-function’ term in C++ and C−−

from the rest and thus write C++(ϑ1, ϑ2) = D δ̄(ϑ1−ϑ2)+C
′
++(ϑ1, ϑ2), similarily for C−−. Then the ensemble-average

of (41) becomes

E (Cov(M; θ1, θ2))=
σ4
ǫ

2πAn2

∫ 2min(θ1,θ2)

0

dϑϑ

θ21θ
2
2

[

K2
+T+

(

ϑ

θ1

)

T+

(

ϑ

θ2

)

+ (1 −K+)2T−

(

ϑ

θ1

)

T−

(

ϑ

θ2

)]

+

∫ 2θ1

0

dϑ1 ϑ1

θ21

∫ 2θ2

0

dϑ2 ϑ2

θ22

{

K2
+T+

(

ϑ1

θ1

)

T+

(

ϑ2

θ2

)

C′

++(ϑ1, ϑ2) + (1 −K+)2T−

(

ϑ1

θ1

)

T−

(

ϑ2

θ2

)

C′

−−(ϑ1, ϑ2)

+K+(1 −K+)

[

T+

(

ϑ1

θ1

)

T−

(

ϑ2

θ2

)

C+−(ϑ1, ϑ2) + T−

(

ϑ1

θ1

)

T+

(

ϑ2

θ2

)

C+−(ϑ2, ϑ1)

]

}

. (42)

As expected, the covariance matrix of M does not depend on the binning of the correlation function. For the calculation
of M for observational data, it is therefore best to choose very small bin widths, in order to minimize discretization
errors.

The first term in (42) yields the covariance in the absence of cosmic shear correlations, i.e. the covariance of the
estimator M due to the intrinsic ellipticity of the source galaxies. This term can be written as

σ4
ǫ

2πAn2θ22
f(θ1/θ2) = 3.939 × 10−10

( σǫ
0.3

)4
(

A

1 deg2

)−1 (

n

30 arcmin−2

)−2 (

θ2
1 arcmin

)−2

f(θ1/θ2) ,

where

f(R) = (1 − 2K+ + 2K2
+)

∫ 2

0

dxxT+(x)T+(Rx) = (1 − 2K+ + 2K2
+)

∫ 2

0

dxxT−(x)T−(Rx)

= (1 − 2K+ + 2K2
+)(576)2

∫ ∞

0

dt

R4t7
J2
4(Rt) J2

4(t) (43)

where the explicit relation has been obtained by making use of the original definitions of T±. The function f(R) is
maximized at R = 1, where its value is f(1) ≈ 0.29, and it decreases quickly for appreciable ratios of the aperture
radii. The dependence on K+ is simple, and obviously this noise term is minimized for K+ = 1/2, i.e. when both
correlation functions enter the estimate M with equal weight. The variance of the estimator M in the absence of shear
correlations can be compared with the corresponding expression obtained in SvWJK, obtained from their equations
(5.12) and (5.16), yielding

G2 σ4
ǫ

2π2n2θ4Nf
=

2.88

π2

σ4
ǫ

An2θ2
,

where G = 1.2 is a numerical coefficient (calculated from the filter function in the definition of Map), and Nf is the
number of independent apertures that can be placed on the data field, taken to be A/(4θ2). Together with f(1) ≈ 0.29,
one clearly sees that the variance of the estimator M is substantially smaller than that used in SvWJK which was based
on placing non-overlapping apertures on the data field. The main reason for this difference is that in the latter method,
only one component of the source ellipticities is used; furthermore, apertures separated by less than their diameter
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Fig. 3. Left panel: The square-root of the autovariance of M as a function of angular scale. The long-dashed and
dash-dotted curves show the minimum variance, i.e. in the absence of a shear correlation; this variance is due solely
to the intrinsic ellipticity of source galaxies. Curves are shown for K+ = 0, 1/2, 1, where the minimum variance is
the same for K+ = 0 and 1. The solid, dashed and dotted curves show the variance in the presence of a cosmic
shear; also here, the cases K+ = 0 and K− = 1 are nearly the same, and the variance is smallest for K+ = 1/2.
For comparison,

〈

M2
ap

〉

(θ) is plotted as thick solid curve. As for the other figures shown before, our standard set of

parameters A = 1 deg2, n = 30 arcmin−2 and σǫ = 0.3 has been used; the variance scales as A−1. Right panel: The
correlation coefficient rcorr(M; θ1, θ2) of the covariance of the estimator M is plotted as a function of θ2, for various
values of θ1; the values of θ1 can be localized as those points where the correlation function attains the value unity.
The solid curves are for K+ = 0, i.e. when only the correlation function ξ− is used in the estimate of M, the dotted
curves are for K+ = 1/2, and the dashed curves for K+ = 1. The width of all three families of curves is very similar
and (in logarithmic terms) basically independent of θ1. The K+ = 0 curves do not develop a tail of anticorrelation, as
is the case for K+ = 1 (and therefore also for K+ = 1/2). Hence, whereas K+ = 1/2 yields the smallest variance of
the estimator M, it leads to a small but long-range correlation between different angular scales

are statistically nearly independent. Hence, the determination of
〈

M2
ap

〉

through the shear correlation function is not
only more practical in the presence of gaps in the data field, but also far more efficient than the alternative method.

We have plotted in Fig. 3 the square root of the variance Var(M, θ) ≡ Cov(M; θ, θ) of M, both for the case of
no correlations, and for our standard model for the cosmic shear. For small angular scales, the variance is completely
dominated by the intrinsic source ellipticities, whereas the cosmic variance is the important noise error for larger
angular scales. For the parameters used here, the transition between these two regimes occurs at a few arcminutes.
It must be noted that the shape of the variance curves are independent of the survey area A. The results shown in
Fig. 3 can be seen as an a posteriori justification of using the Gaussian assumption for the calculation of the shear
four-point function in Sect. 4. In Fig. 4 of van Waerbeke et al. (2002), the influence of the non-linear density evolution
on the kurtosis of Map was studied, using ray-tracing simulations through numerically generated cosmological matter
distributions. The non-Gaussian effects start to become non-negligible for angular scales below ∼ 5′. As can be seen
in Fig. 3, this is about the scale where the transition occurs between the variance being dominated by the intrinsic
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ellipticity distribution and the cosmic variance. Hence, we can expect that a more advanced treatment of the shear
four-point function would yield a slightly larger variance in this transition region around ∼ 5′: for significantly smaller
scales, it is dominated by the intrinsic ellipticity noise, and for larger scales, the shear four-point function is basically
Gaussian.

The variances of M for the cases K+ = 0 and K+ = 1 are basically identical, and larger by a factor ∼ 2 than
the variance of the estimator for K+ = 1/2. Hence, to minimize the variance of the estimator M, K+ = 1/2 should
be chosen. With this choice, the results are unchanged even in the presence of a B-mode contribution (see SvWM).
As was already mentioned by C02, using cosmic shear estimators which use ξ+ and ξ− with equal weight reduces
the resulting noise by a factor 2−1/2. One notes that the variance for large θ rises, but very slowly. We can compare
the behavior of the variance of M with that derived in SvWJK for a more direct estimator for the aperture mass
dispersion; using eqs. (5.12) and (5.16) of that paper, one finds in the limit of large angles (and, to make the estimate
comparable to the one obtained here, zero kurtosis) that

√

Var(M′; θ) ≈ 2θ
〈

M2
ap

〉

(θ)/A, where M′ is the estimator
used in SvWJK. The functional behavior with θ is similar to that seen in Fig. 3, but the amplitude is lower by a factor
of about 2 for K+ = 0, 1, and about 3 for K+ = 1/2; this again shows the superiority of the estimator considered here
in comparison to laying down independent apertures on the data field.

To investigate the correlation of the estimator M between different angular scales, we define the correlation
coefficient

rcorr(M; θ1, θ2) :=
Cov(M; θ1, θ2)

√

Cov(M; θ1, θ1) Cov(M; θ2, θ2)
, (44)

which has the property that rcorr(M; θ, θ) = 1. The dependence of this correlation on the ratio of the angular scales
then provides information on the correlated error of the determination of the aperture mass dispersion on different
angular scales. In the right panel of Fig. 3 we have plotted this correlation coefficient as a function of θ2, for various
values of θ1. The logarithmic representation clearly shows that this correlation coefficient depends mainly on the
ratio θ1/θ2. The correlation drops off quickly, so that estimates of

〈

M2
ap

〉

(θ) for two angles with ratio θ1/θ2 <∼ 1/3

or θ1/θ2 >∼ 3 are practically uncorrelated. This was to be expected given that
〈

M2
ap

〉

(θ) is obtained from the power
spectrum Pκ(ℓ) through a very well localized filter function. Hence, the estimator M decorrelates much faster than
those of the shear correlation functions. Also seen in Fig. 3 is the fact that in the case of K+ = 1/2 and K+ = 1, the
correlation coefficient attains long negative, but low-amplitude tails, whereas they are basically absent if K+ = 0. This
is due to the much faster decorrelation of ξ− with scale ratio than that of ξ+.

7. A simple estimator for the power spectrum, and its covariance

The relations (5) may be used to define an estimator for the power spectrum Pκ(ℓ) as

P̂ (ℓ) = 2π

∫ θmax

θmin

dθ θ [K+ξ+(θ)J0(ℓθ) + (1 −K+)ξ−(θ)J4(ℓθ)] , (45)

where K+ ∈ [0, 1] again describes the relative contribution from the ξ+ correlation. Here, θmin and θmax describe the
range over which the correlation function has been measured. If this range extends from zero to infinity, the estimator
(45) would be unbiased (and would yield the E-mode power spectrum for K+ = 1/2 even in the presence of B-modes);
for real datasets, where this range is finite, (45) is a biased estimator. Note that in the absence of B-modes, eq. (45)
remains valid even if the factor K+ is chosen to be a function of ℓ. The expectation value can be obtained by inserting
the relation (2) between the correlation functions and the true power spectrum into (45) to yield

〈

P̂ (ℓ)
〉

≡ Pobs(ℓ) =

∫ ∞

0

dℓ′ ℓ′ [K+G0(ℓ, ℓ
′) + (1 −K+)G4(ℓ, ℓ

′)] Pκ(ℓ
′) , (46)

with

Gn(ℓ, ℓ
′) =

∫ θmax

θmin

dθ θ Jn(ℓθ) Jn(ℓ
′θ) =

[

θ

ℓ′2 − ℓ2
{ℓ′Jn+1(ℓ

′θ)Jn(ℓθ) − ℓJn(ℓ
′θ)Jn+1(ℓθ)}

]θ=θmax

θ=θmin

. (47)

We have plotted the ‘observed’ power spectrum as ℓ2Pobs(ℓ) in Fig. 4, for K+ = 0 and K+ = 1, assuming that
θmin = 6′′ and θmax = 2◦. A comparison with the underlying power spectrum (shown as heavy solid curve) shows
that Pobs traces the true power spectrum over a wide range of ℓ-values, though in an oscillatory way. If Pobs is
determined solely from ξ− (i.e. K+ = 0), it substantially underestimates the power for ℓ <∼ 102 (that is, approximately
for ℓ <∼ 2π/θmax), but traces the true power spectrum out to the largest values of ℓ plotted. Conversely, the observed
power determined from ξ+ yields good estimates of the true power for small values of ℓ, but deviates from it strongly



14 Peter Schneider et al.: Analysis of two-point statistics of cosmic shear: I. Estimators and covariances

Fig. 4. The thick solid line displays the dimensionless projected power spectrum ℓ2Pκ(ℓ), whereas the other two
curves show the ‘observed’ power spectrum, as defined in (46). The dotted curve is for K+ = 0, i.e. only ξ− enters
the determination of the observed power spectrum in this case; the dashed curve is for K+ = 1. In this plot is was
assumed that the correlation functions are known between θmin = 6′′ and θmin = 2◦

for ℓ >∼ 8 × 103, that is for values of ℓ much less than 2π/θmin ∼ 2 × 105. The different behavior of the two estimates
again is due to the different filter function through which correlation function and power spectrum are related. Fig. 4
suggests that the best estimate for the power spectrum is obtained by choosing K+ = 1 for small values of ℓ, and
K+ = 0 for large ℓ.

The covariance matrix of P̂ reads, for K+ = 1,

Cov(P̂ ; ℓ, ℓ′) = (2π)2
∫ θmax

θmin

dθ θ J0(ℓθ)

∫ θmax

θmin

dθ′ θ′ J0(ℓ
′θ′)C++(θ, θ′) ; (48)

the generalization for other values of K+ is obvious and shall not be reproduced here.
To estimate the power spectrum from cosmic shear data, it is useful to define the power in a band with upper and

lower ℓ-values ℓiu and ℓil as

Pi :=
1

∆i

∫ ℓiu

ℓil

dℓ ℓ P̂ (ℓ) =
2π

∆i

∫ θmax

θmin

dθ

θ

{

K+ξ+(θ)
[

g+(ℓiuθ) − g+(ℓilθ)
]

+ (1 −K+)ξ−(θ)
[

g−(ℓiuθ) − g−(ℓilθ)
]}

,(49)

where ∆i = ln(ℓiu/ℓil) is the logarithmic width of the band, and

g+(x) = xJ1(x) ; g−(x) =

(

x− 8

x

)

J1(x) − 8J2(x) . (50)

One expects that the band power traces ℓ̄2i Pκ(ℓ̄i), where ℓ̄i is the geometric mean of ℓiu and ℓil, i.e. the center of the
bin. The covariance of the band power of two bins i and j is

Cov(PiPj) =
2πσ4

ǫ

∆i ∆j An2

∫ θmax

θmin

dθ

θ3

[

K2
+Gi+(θ)Gj+(θ) + (1 −K+)2Gi−(θ)Gj−(θ)

]

+
(2π)2

∆i ∆j

∫ θmax

θmin

dθ

θ

∫ θmax

θmin

dθ′

θ′

{

K2
+C

′

++(θ, θ′)Gi+(θ)Gj+(θ′) + (1 −K+)2C′

−−(θ, θ′)Gi−(θ)Gj−(θ′)

+ K+(1 −K+)C+−(θ, θ′) [Gi+(θ)Gj−(θ′) +Gi−(θ′)Gj+(θ)]
}

(51)

where Gi±(θ) = g±(ℓiuθ) − g±(ℓilθ). In (51), we have already split off the ‘delta-function’ part of the correlation
covariance matrices, which yields the first term. It should be noted that the foregoing expressions remain valid if K+
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Fig. 5. The large panel shows the estimates of the band power, shown as horizontal bars whose length indicates the
bins used. The error bar on each bin shows the square root of the autovariance of the band power, and the solid
curve is the underlying power spectrum, ℓ2Pκ(ℓ). For this figure, we have assumed that the correlation functions are
measured for 6′′ ≤ ϑ ≤ 2◦, from a survey of A = 25 deg2. The inset figure shows the correlation coefficient between
the 13 different bins, where the triangles indicate the center ℓ̄ of each bin. One sees that the bands are very little
correlated, except for the three bins with smallest ℓ; in fact, the first three band power estimates are fully correlated.
This explains why the band-power estimator yields reasonable results even for ℓ < 2π/θmax ∼ 180 – this is just a
coincidence.

is varied as a function of ℓ. From Fig. 3 it is clear that in order to get the least bias, one wants to choose K+ ∼ 1 for
small ℓ, and K+ ∼ 0 for large ℓ; for the intermediate region, setting K+ = 1/2 should yield the smallest error on the
power spectrum. We have therefore constructed a function K+(ℓ) which has these desired properties.

In Fig. 5 we have plotted the band power for our reference model parameters, in 13 bins of width ℓiu/ℓil = 2,
between ℓ = 10 and ℓ ≈ 8 × 104. The band power is shown as crosses, and vertical error bars show the range of the
bins. For comparison, the solid curve shows ℓ2 Pκ(ℓ); as expected, with this new choice of K+(ℓ), the band power
traces the underlying power spectrum over a very wide range of wavenumbers. Only in the bins with the smallest and
largest value of ℓ is there a significant bias; over the range 2π/θmax ≈ 180 <∼ ℓ <∼ 2π/θmin ≈ 2 × 105, the band power
estimator is practically unbiased. Next we calculated the error bars on the band power, by taking the square root of
the diagonal part of (51). For this calculation, we have assumed to have a total area of A = 25 deg2, for which the
condition θ2max ≪ A for the validity of the treatment of the ensemble average in Sect. 5 is approximately satisfied. The
square root of this autovariance is plotted as errorbars on the band power in Fig. 5; as can be seen from this figure, the
signal-to-noise ratio is larger than unity in all bins shown, and in fact very large for intermediate values of ℓ. Hence,
the power spectrum Pκ(ℓ) can be measured over a broad range of ℓ for the parameters chosen here.

Of course, in order to interpret the error bars correctly, it is important to see the degree of correlated noise between
different bands. The correlation matrix for the bins [defined in full analogy to (44)] was calculated and its values are
plotted in the inset of Fig. 5. One sees that errors of the bins for intermediate and high values of ℓ are essentially
uncorrelated (the correlation coefficient for neighboring bins is <∼ 10% for ℓ >∼ 200); however, for ℓ <∼ 100 the bins
become strongly correlated. In fact, the agreement of the band powers with the underlying power spectrum is forticious
for ℓ <∼ 100: the three band powers at lowest ℓ are nearly fully correlated, so that these three points contain practically
the same information of the underlying power spectrum.

The method presented here for the determination of the power spectrum has the virtue of its simplicity. Other
methods for determining the power spectrum from shear data have been investigated, e.g. by Kaiser (1998), Seljak
(1998) and Hu & White (2001). Our approach has the property that it makes use only of the shear correlation
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Fig. 6. 1-σ, 2-σ and 3-σ confidence contours in the Ωm-Σ8-plane, where Σ8 is a scaled version of the power spectrum
normalization parameter σ8, as indicated. Dotted, dashed and solid contours correspond to χ2

+, χ2
− and χ2

tot. In the
left panel, the shape parameter of the power spectrum Γ = 0.21, whereas in the right panel, Γ = 0.7Ωm. The reference
model is the one used before, i.e. Ωm = 0.3, ΩΛ = 1 − Ωm, σ8 = 1. The contours are obtained by assuming a survey
area of A = 5 deg2, and that the correlation functions were measured in the range 12′′ ≤ ϑ ≤ 30′.

functions, not on the spatial distribution of the shear. Since the shear correlation function contains all two-point
statistical information of the shear field, no information loss occurs. Comparing the results of Fig. 5 with those of
Hu & White (2001) it seems that both methods yield very similar error bars of the power spectrum, and that in the
respective ℓ-range of applicability, the decorrelation between neighboring bins is equally quick. Since our method does
not require the ‘pixelization’ of shear data, it can estimate the power spectrum to larger values of ℓ.

8. Constraints on cosmological parameters

One of the central goals of cosmic shear research is the determination of cosmological parameters. Since the power
spectrum Pκ, and thus the shear correlation functions, depend on the cosmological model, precise measurements of
cosmic shear can be used to tie down the range of allowable model parameters (e.g., Jain & Seljak 1997; Bernardeau
et al. 1997). The largest cosmic shear survey today already yielded significant model constraints (van Waerbeke et al.
2001, 2002; Hoekstra et al. 2002). We shall briefly discuss the expected confidence regions in parameter space, using
the previously calculated covariance matrix of the shear correlation functions. For that, we consider a figure-of-merit
function

χ2(p) :=
∑

ij

(

ξi(p) − ξti
)

Cov−1
ij

(

ξj(p) − ξtj
)

, (52)

where the index t indicates the correlation function of the input model, p is a set of model parameters, and the
summation indices label the angular bins of the correlation function. We shall consider three different kinds of the
function (52): in the first, named χ2

+ hereafter, the correlation functions in (52) are the ξ+ correlations, and the
covariance matrix corresponds to (23). The second kind is denoted by χ2

− and uses the ξ− correlation function. The
third kind, χ2

tot, is obtained by constructing a vector ξi = (ξ+1, ξ+2, . . . , ξ+N , ξ−1, ξ−2, . . . , ξ−N ), when there are N
angular bins in which ξ± has been measured. Correspondingly, the covariance matrix in (52) is the 2× 2-block matrix
with C++ and C−− in the upper left and lower right quadrant, respectively, and C+− in the other two.
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8.1. The σ8–Ωm degeneracy

We first have calculated χ2 for a two-parameter set of cosmological models, by varying Ωm and σ8; these two parameters
were considered before in van Waerbeke et al. (2001). We kept the other cosmological parameters fixed, except that flat
Universes are considered, i.e. Ωm+ΩΛ = 1. From the confidence contours plotted in van Waerbeke et al., it is anticipated
that the χ2-function, considered as a function of Ωm and σ8, will have a long and curved valley close to its minimum.

This was verified here. In it therefore useful to consider the combination Σ8 := σ8

[

0.41 + 0.59(Ωm/0.3)−0.68
]−1

as
parameter when plotting contours of χ2 (the numerical values occurring in this definition have been obtained by a fit
through the valley line in the Ωm–σ8 plane).

In Fig. 6 we have plotted contours of constant χ2 in the Ωm–Σ8 plane, corresponding to 1-σ, 2-σ and 3-σ confidence
regions. In the left panel, we kept the shape parameter of the power spectrum fixed, Γ = 0.21, whereas in the right
panel we used Γ = 0.7Ωm, adequate for a (dimensionless) Hubble constant of h = 0.7. Shown are the confidence
regions for all three functions χ2, as indicated. The first point to note is that, for a given value of Ωm, σ8 is very
well constrained, to within a few percent. This implies that the normalization of the power spectrum is very well
determined from cosmic shear observations. Secondly, the 1-σ uncertainty on Ωm is about 0.1 for an assumed survey
size of A = 5 deg2; indeed, the left panel of Fig. 6 can be compared directly with similar figures in van Waerbeke et al.,
and the constraints on Ωm are quite similar. Third, if the shape parameter changes with Ωm, the confidence regions
are narrower than when setting Γ = 0.21 as constant, which implies that the shear correlation functions are sensitive
measures for Γ.

8.2. Additional parameters

In the prospect of measuring the cosmological parameters, we must also allow for our lack of knowledge of some
parameters which might have a significant effect on our observable, but which are poorly constrained. In particular, it
is important to explore the possible directions of degeneracies and to identify which combination of parameters offers
the most promising measurements. As shown in Jain & Seljak (1997), the shear 2-point statistics depend primarily on
four parameters: Ωm, σ8, Γ and zs, the source redshift parameter. We now model the source redshift distribution with

p(z) =
β

zs Γ
(

1+α
β

)

(

z

zs

)α

exp

[

−
(

z

zs

)β
]

, (53)

where we choose α = 2 and β = 1.2, and take zs as the free parameter; note that the mean redshift of the sources is
〈z〉 ≈ 2.09zs. This choice is motivated from observational considerations (see van Waerbeke et al. 2002). We therefore
constructed the 4-dimensional figure-of-merit function (52), where now ξi ≡ ξ+(θi; Ωm, σ8,Γ, zs). The fiducial model
is chosen to be Ωm = 0.3, σ8 = 1, Γ = 0.21 and zs = 0.44. It is assumed that the shear correlation function is
measured in the range 0.′6 ≤ ϑ ≤ 30′, comparable with the most recent cosmic shear measurements. We also fix the
survey area to A = 16 deg2 and the galaxy intrinsic ellipticity r.m.s. to 0.3. Figure 7 shows the confidence regions,
assuming weak priors on pairs of hidden parameters. From the four parameters to be determined, we can construct 6
pairs of parameters, and for each pair, the other two parameters are marginalized, in such a way that Ωm ∈ [0.2, 0.4],
σ8 ∈ [0.8, 1.1], Γ ∈ [0.1, 0.3] and zs ∈ [0.4, 0.5]. The marginalization intervals are chosen to be consistent with realistic
constraints coming from other experiments, especially from the Cosmic Microwave Background (e.g., Sievers et al.
2002), the 2dF (Lahav et al. 2001) and the SLOAN (Szalay et al. 2001) results, and photometric redshifts. Note
that we always fix the cosmological constant to ΩΛ = 1 − Ωm, that is we assume the (correct) flat geometry. The
strongest constraints are found for the Ωm-σ8, Γ-σ8 and Ωm-Γ pairs, suggesting that once the redshift distribution
of the sources is known we can obtain stringent constraints on the cosmological parameters from cosmic shear. The
degeneracy directions can be better studied with a strong prior likelihood analysis as shown on Fig. 8. On this plot, we
assume that the two hidden parameters of each constrained pair are known and fixed at their true value. Again we see
that the best constraints come from pairs of parameters which exclude the redshift information. It is remarkable that
the degeneracy among these parameters can be broken quite efficiently, given that the cosmic shear signal has so few
“spectral features”, compared to the cosmic microwave background for instance. In fact, the degeneracy can be broken
when using linear and non-linear scales simultaneously (as discussed in Jain & Seljak 1997). One would obtain an even
better degeneracy breaking by going further into the linear regime (up to 1 or 2 degrees). Also, it is interesting to
note that the parameters which are least affected by the marginalization (compare Figures 7 and 8) is the Ωm-σ8 pair,
which is most directly comparable to cluster normalization constraints (see a discussion on the comparison between
cluster normalization and cosmic shear constraints in van Waerbeke et al. 2002).
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Fig. 7. 1-σ, 2-σ and 3-σ confidence contours for the maximum likelihood analysis on the four parameters Ωm, σ8, Γ
and the source redshift parameter zs (see text). The six possible pairs of parameters are displayed. On each figure, the
two hidden parameters are marginalized such that Ωm ∈ [0.2, 0.4], σ8 ∈ [0.8, 1.1], Γ ∈ [0.1, 0.3] and zs ∈ [0.4, 0.5], and
the cosmological constant is fixed to ΩΛ = 1 − Ωm. The reference model is Ωm = 0.3, σ8 = 1, Γ = 0.21 and zs = 0.44.
The survey area is A = 16 deg2, the galaxy ellipticity r.m.s. is 0.3, and the correlation functions are measured in the
range 0.′6 ≤ ϑ ≤ 30′.

9. Conclusions

In this paper we have obtained general expressions for the covariance of an estimator for the shear correlation function
as it is determined from cosmic shear data. Using the approximation that the four-point function of the shear separates
in products of two-point function, the covariance can be expressed directly in terms of the correlation functions, as
given in (23–25) and can, for a given data set, be calculated directly. The covariance of the correlation functions
depends on the number of pairs that enter their estimate, which in turn depends on the solid angle covered by the
survey and the survey geometry (see also Kaiser 1998); in addition, it depends on the intrinsic galaxy ellipticities and
the number density of galaxies.

Next, considering a survey geometry of a single compact region of solid angle A, we have calculated the ensemble
average of the covariances, using approximations which a valid for separations ≪

√
A. The ensemble average of the

covariances can then be reduced to integrals which are readily evaluated numerically. The estimate for the correlation
function ξ−(ϑ) decorrelates quickly, i.e. estimates of ξ− for two angular scales which differ by more than a factor ∼ 2
are essentially decorrelated. On the other hand, the estimates of ξ+ are correlated over much larger angular scales. The
cross-correlation between ξ+(ϑ1) and ξ−(ϑ2) is significant for ϑ1 <∼ ϑ2, which is due to the properties of the different
filters with which these correlation functions are related to the power spectrum Pκ(ℓ).
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Fig. 8. Same as figure 7 with strong priors: in each figure, the two hidden parameters as assumed to be known perfectly.
These plots show the degeneracy directions among all the possible pairs of parameters obtained from Ωm, σ8, Γ and
zs. Note that the wiggles at the edge of the contours are not real features of the probability constraints. Their are
inherent to the sampling limitation of the 4-dimensional cube of models given the memory limit of our machines. Also
note that the upper left panel is the analogue of Fig. 6, but without the scaling employed there.

Using these ensemble-averaged covariances for the correlation functions, we have obtained the covariances for other
two-point measures of the cosmic shear, primarily the aperture mass dispersion and the power spectrum. Of particular
interest is the reconstruction of the power spectrum Pκ(ℓ) from the correlation functions; we have constructed a
simple estimator for Pκ and the band powers of it in terms of the ξ’s and found that the band power can be obtained
with surprisingly large accuracy from even a moderately-sized cosmic shear survey. Finally, we have investigated the
confidence regions for the most relevant cosmological parameters (Ωm, σ8, Γ and zs) with a maximum likelihood
approach. We studied our ability to constrain simultaneously these parameters from a measurement of the shear
correlation function, as well as the effect of some level of lack of knowledge using the marginalization technique.

In a future paper, we shall investigate strategies for conducting cosmic shear surveys by optimizing the survey
geometry.
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